
Institute of Distributed Systems
Ulm University

Cross Site Request Forgery
Michael Müller | Practical IT-Security | ss 2014

Structure

The following assignments have been written short on hints. This is due to the fact that I don’t know on which

level your skills are. If you are stuck on something, please don’t hesitate to ask me. It would be a pity, if you would

spend half the time on figuring out JavaScript syntax subtleties. It may be helpful for the assignments to revisit the

presentation slides. I have made them available at http://cmichi.github.io/talks/csrf/talk/.

To give a rough structure of the practical assignments:

Part 1 ca. 30 min

Presentation Solution ca. 10 min

Part 2 ca. 60 min

Presentation Solution ca. 20 min

Exercise 1: Metasploitable ca. 30 minutes

These tasks will be executed using Metasploitable. Please start the application and make sure you have access to the

webserver of the virtual machine.

a) Damn Vulnerable Web App Direct your browser to the IP-address of the Metasploitable image, e.g.

http://192.168.1.103/dvwa. Configure Security Level low as described in the preparation document.

Try to exploit the CSRF vulnerability available via the navigation bar on “/dvwa/vulnerabilities/csrf/”. The button

“View Source” might provide additional information. Your exploit should be a HTML page containing only HTML

markup code. Once this markup is interpreted by a browser, a HTTP request should be send by the browser in

order to set a new password. Think about which typical HTML elements execute HTTP requests in order to load

a further resource.

b) Damn Vulnerable Web App Configure Security Level medium and try to exploit the hardened CSRF vulnera-

bility. Your exploit should consist of HTML markup and JavaScript code this time.

c) TWiki Write an exploit which creates a new wiki page. To achieve this, prepare a HTML page with the embedded

exploit. The exploit should not rely on a user being logged in. Feel free to use HTML and/or JavaScript.

http://cmichi.github.io/talks/csrf/talk/
http://192.168.1.103/dvwa

Exercise 2: Advanced CSRF ca. 60 minutes

These tasks will be done using the advanced-csrf web application. Please see the Moodle platform for the advanced-

csrf.zip. Please unzip the archive to your web server executable directory.

You will then need to create a database “advanced-csrf” within MySQL and import the dump.sql into your MySQL

database. You might then need to adapt the MySQL credentials within the “advanced-csrf/mysql.inc.php”.

a) The site “/ex2-1/leaking.php” provides a way of leaking textual information. Suppose somebody wants to frame a

certain person of leaking information. They craft a mail and use social engineering mechanisms as a mean to get

a victim to visit a website which contains a malicious CSRF attack.

How would the exploit on such a website need to be written as a mean to submit the form with textual information,

without the user noticing? Use JavaScript and HTML to assemble such a website.

b) The site “/ex2-2/index.php” contains a form which the developers tried to make safe against CSRF attacks using

the Token Synchronizer Pattern.

Try to exploit the application in a way that when a visitor visits “/ex2-2/index.php” he automatically votes for

banana without noticing it.

c) The site “/ex2-3/index.html” contains a multi-step form for a subscription service. Your goal is to prepare an

exploit which will lead the browser who interprets the code into submitting the completed survey with options of

your choice.

d) The voting page has an administration interface. Assume the administrators are logged into it and have full access

to the JSON API of the administration interface. For example, this command will reset the voting:

POST /ex2−3/ap i / r e s u l t s HTTP/ 1 . 1

Host : l o c a l h o s t

{

" a c t i o n " : " r e s e t −v o t i n g " ,

" v a l u e " : " a l l "

}

The administrators are very careful and have turned off JavaScript within their browsers. However, they still get

send a faked mail with a link to a pretty website – which they of course visit.

How can you write a – purely HTML based – exploit, which will send manipulated calls to the API? Please write

an exploit which makes a POST request with a JSON payload.

$./happy_hacking --now --mood ":)"

2

https://moodle.uni-ulm.de/course/view.php?id=1312

